
A Run-time Environment for Da CaPo Proc. INET ’93 M. Vogt

BFC-1

A Run-time Environment for Da CaPo

Martin Vogt1

Bernhard Plattner2

Thomas Plagemann3

Thomas Walter4

Abstract

It is a well known fact that the performance
bottleneck of modern high speed networks is located
in the end systems. Reasons are the complexity of
the applied protocols and the embedding of
protocols in the end systems. Da CaPo (Dynamic
Co n f i g u ra tion of P ro tocols) provides an
environment which allows the dynamic
configuration of protocols with respect to the
application requirements and the properties of the
offered network services. The goal of the
configuration is to reduce the protocol complexity
and increase the performance. Modules serve as
building blocks for the protocol configuration.
Common software engineering principles like
encapsulation and information hiding as well as a
unified module interface allow the unrestricted
configuration of modules to protocols. The runtime
environment of Da CaPo links modules to protocols
in one UNIX process and realizes an efficient data
transport inside the end system because operations
reducing performance like data copying or UNIX
context switches are minimized in Da CaPo.

I. Introduction

Modern high speed networks such as optical
LAN's or Metropolitan Area Networks using techno-
logies based on fast packet switching or fast circuit
switching offer magnitudes more of bandwidth than
traditional networks. This plentiful amount of
bandwidth has enabled the design and implemen-
tation of new distributed applications handling
multi-media information. Most of the high-speed
networks offer end-to-end connectivity like ATM.
In most cases the offered service and quality of

1 Mr. Vogt is with the Swiss Federal Institute of
Technology Zurich. He may be reached at
vogt@komsys.tik.ethz.ch

2 Prof Plattner is with the Swiss Federal Institute of
Technology Zurich. He may be reached at
plattner@komsys.tik.ethz.ch

3 Mr. Plagemann is with the Swiss Federal Institute of
Technology Zurich. He may be reached at
plagemann@komsys.tik.ethz.ch

4 Mr. Walter is with the Swiss Federal Institute of
Technology Zurich. He may be reached at
walter@komsys.tik.ethz.ch

service do not directly meet the requirements of the
distributed applications. The network-services must
be enriched by additional functionality as it is found
in transport protocols or facilities for synchroni-
sation and presentation coding. Most end-to-end
protocols offering such functionality result in the
performance bottleneck in high-speed communi-
cations. Reasons are the insufficient processing
power of the end-systems, the missing tailoring
options in the end-system protocol and the
embedding of the communication subsystem in the
operating system.

The aim of the Da CaPo (Dynamic Configu-
ration of P rotocols) project at ETH Zurich is to
overcome this communication speed bottleneck by
configuring end-system protocols. An optimally
adapted protocol is configured depending on the
offered network-services, the requirements of the
application and the processing power available. This
protocol represents a light-weight protocol, as no
unnecessary protocol functions are included [1].

Transport infrastructure
CT-Interface

AC-Interface

C Layer-

End-system

protocol

Application A

T

C

Figure 1: The Da CaPo 3 layer model

The main idea of Da CaPo is to subdivide the
communication subsystem into three layers. The
lowest layer of the three layer model (Fig. 1), the
transport infrastructure (T layer), connects end-
systems. The service of this layer (T service) is
different compared with the OSI transport service.
The T service is generic as it might be the service of
a MAC layer of a MAN such as DQDB, an ATM
adaptation layer or the service of a transport
protocol like TCP or XTP. The T service generally
has to be enhanced within the C layer (by a
configured protocol) to allow applications (located
in the A layer) to cooperate.

Various authors have proposed similar
approaches to overcome the performance bottleneck
in the end-systems. Haas [2] describes an

A Run-time Environment for Da CaPo Proc. INET ’93 M. Vogt

BFC-2

architecture consisting of the same three layers and
a horizontally oriented protocol for high speed
communication (HOPS) built from simple protocol
functions. Clark and Tennenhouse [3] investigate
"principles to structure a new generation of
protocols" and introduce "Integrated Layer
Processing" as a protocol engineering principle that
allows the implementor to perform all data
manipulations in one step (or in several parallel
steps) instead of performing them sequentially.
O'Malley and Peterson [4] address the issue of
constructing a protocol entity from a set of micro-
protocols (the equivalent of protocol functions)
using the notion of a virtual protocol. The object-
oriented ADAPTIVE system [5] allows protocol
configuration and reconfiguration guided by classes
of protocol mechanisms. F-CSS [6] is a function-
based model for a communication subsystem and
supports the application-driven configuration of
efficient protocol machines tailored to the needs of
the application. Protocol mechanisms (realising
protocol functions) are used as building blocks for
the configuration. F-CSS supports 4 predefined
service classes: class I unreliable real time services
(e.g. for voice and video), class II reliable real time
services (e.g. for process-control applications), class
III unreliable non-real time services (e.g. for simple
text and graphic transmissions) and class IV reliable
non-real time services. Finally, selection of one of
several protocols according to the requirements of
the application and the service provided by the
underlying layer is used in the ISO standard [7].

Protocol configuration aims at the performance
aspect. The 'lighter' protocols are the less resources
(mainly CPU time) are used. Besides the benefit of
performance, protocol configuration systems
encourage the implementation of reusable building
blocks and may be used as flexible test- and
measurement-environments.

In this paper we concentrate on dynamic
construction and the execution of protocols as they
are realized in Da CaPo. The next section gives an
overview on Da CaPo, its foundation and its
implementation. Section III of the paper discusses
the concepts of the resource manager, the way
modules are combined to protocols and the data
flow inside a protocol. Section IV describes the
current implementation on a single processor
machine. Our contribution finishes with some
conclusions in section V.

II. An Overview of Da CaPo

The model for dynamic configuration of light-
weight protocols [8] represents the foundation of
Da CaPo. The realization of this model is
characterized by three co-operating active entities to
configure modules to well appropriate protocols and
execute them:

• the configuration process determines the
necessary modules,

• the connection manager negotiates the
dynamic protocol and

• the resource manager provides the runtime
environment for configured protocols.

A database stores information of general interest.
Mainly the configuration process and the resource
manager are handling this information.

II.A. The Three Layer Model

Da CaPo is based on a three layer model which
splits communication systems into the layers A, C
and T (Fig. 1). End systems communicate with
another via layer T, the transport infrastructure. The
transport infrastructure represents the existing and
connected communications infrastructure. We name

their services T services.5 In layer C the end-to-end
communication support adds functionality to the
T services in such a manner that at the AC-interface
a full set of services is provided as needed to support
distributed applications (layer A).

Revising layer C services in a top-down manner
we say C services are decomposed into a set of
protocol functions according to their functionality.
Protocol functions are defined by their semantics.
Each protocol function encapsulates a typical
protocol task like error control, flow control,
de/encryption, presentation coding, etc. Protocol
functions can be implemented in multiple ways, by
different protocol mechanisms, as software or
hardware solutions. We call the implementation of a
protocol function a module. Modules implementing
the same protocol function are characterized by
different properties. This may be different
throughput figures or different degrees of error
correction or detection. For instance the protocol
function 'error control' could be implemented by a
single parity bit or by the CCITT CRC algorithm.
While the computation of the parity bit is very
simple and fast, the code detects only single bit
errors within a byte. This contrasts to the CCITT
CRC which is computationally costly (i.e. exhibits a
reduced throughput), but has much better error
detection capabilities.

Each C service is composed of a set of protocol
functions on top of a T service. Data dependencies
between protocol functions define a partial order on
the protocol functions and are specified in a protocol
graph (Fig. 2). A protocol graph can be considered
as a more abstract protocol specification.

If multiple T services may be used, there is one
functional decomposition (i.e. one protocol graph)
for each T service. To create a protocol entity each
protocol function must be instantiated by one of its
modules. The configuration process selects the most
suitable module to configure the best fitting protocol
at connection establishment time.

5 Tschudin [9] calls T services "anchored instances".

A Run-time Environment for Da CaPo Proc. INET ’93 M. Vogt

BFC-3

T

CT-interface

AC-interface

protocol
function

dependency

A

Figure 2: Example of a protocol graph

II.B. The Configuration Process (CP)
The task of the configuration process (CP) is to

select the most suitable modules depending on
the application requirements and the available
T services [10]. The CP retrieves the functional
decomposition of the invoked C service from the
database and calculates the properties of possible
protocol configurations. The instantiation of each
protocol function in a protocol graph with one of the
modules creates one possible configuration. The CP
starts with the properties of the T service and
calculates step by step according to the protocol
graph the influence of the selected modules on the
offered service. The influence of modules on a
service (i.e. module properties) is stored in the data-
base. We use one common syntax to describe the
properties of modules, T services, protocols and
application requirements. We called this language
simply L [8]. All descriptions consist of tuples of
attribute types and functions (mostly constants). The
application requirements additionally include a
weight function which defines the relative
importance of an attribute. This extension enables us
to deal with the wide range of complex application
requirements, mainly introduced by new multi-
media applications and to formulate contradictory
requirements. Fig. 3 shows the BNF definition of L.

The unified representation enables a direct
comparison of application requirements and
protocol properties. If a configuration fulfils the
application requirements we say the protocol is in
compliance with the application requirements. The
protocol with the highest compliance degree will be
the best protocol which can be configured according
to the application requirements.

RequirementsOrProperties ::=
ApplicationRequirements | ModuleProperties |
TransportProperties

ApplicationRequirements ::=
“<“ ApplicationRequirement (“,”
ApplicationRequirements |) “>“ |

ModuleProperties ::=
“<“ ModuleProperty (“,” ModuleProperties |) “>“

TransportProperties ::=
“<“ TransportProperty (“,” TransportProperties |) “>“

ApplicationRequirement ::=
“<“ ARType “,” (ARValue | “*”) “,” Weight “>“

ModuleProperty ::=
“<“ ARType “,” Function “>“

TransportProperty ::=
“<“ ARType “,” ARValue “>“

ARType ::=
(* an enumeration of application requirements *)

ARValue ::=
(* a denotation of a value *)

Weight ::=
(* an enumeration of functions *)

Function ::=
(* an enumeration of functions *)

Figure 3: BNF definition of L

The necessary information for the CP like
properties of modules and T services, functional
decompositions and protocol graphs are stored in a
local database. In the case of a local configuration,
only the information in the local database is
considered. In the case of a global configuration the
CP considers additionally the properties of the
modules and T services of the peer system and
selects the globally best protocol. The connection
manager is responsible for the information exchange
in the case of a global configuration.

Protocol specifications not only describe the
functionality, but also the packet structure. The CP
calculates the structure of the packet header for the
selected protocol configuration. The module
properties in the database include the number and
length of header fields needed by the module. The
CP collects this information from all modules of the
protocol according to the module graph from top to
bottom and defines the header structure for the
current configuration. The CP delivers the descrip-
tion of the configured protocol as a module graph
and a header description to the connection manager.

II.C. The Connection Manager (CM)

The connection manager (CM) assures that
communicating peers are using the same protocol
for a new layer C connection. To achieve this the
CM has the task to organize the

• establishment of connections,

• reconfiguration of existing connections,

• exploitment of connections and

A Run-time Environment for Da CaPo Proc. INET ’93 M. Vogt

BFC-4

• the handling of errors which violate the
application requirements.

During the connection establishment phase and
the reconfiguration phases the CM negotiates with
his peer a common configuration. The CM
communicates with his peer via a fixed protocol
called management support protocol. If the T service
offers a reliable service the management support
protocol is empty. For unreliable T services the
management support protocol consists of a set of
modules offering a reliable service. The CM
negotiates the protocol configuration for the
application using the management support protocol.
Figure 4 illustrates the structure of a layer C
connection consisting of two protocols, the
management support protocol and the application
protocol. The CM supports three different
negotiation scenarios, selectable from the
application by the application requirements:

• In the case of a local configuration the CM
informs the peer CM about the selected
protocol and both CM's establish this
protocol.

• In the global configuration the CM initiates a
local configuration in both end systems, one
CM sends a list of the n best results to his
peer who compares these results with his
local results and selects the best one.
Afterwards he informs his peer about the
selected protocol and both peers establish this
protocol.

• In the combined configuration the
communication between both applications
starts with a pre-determined protocol. While
the applications exchange information via the
pre-determined protocol both CM perform a
global configuration.

CM

CP

A

DB

application
protocol

management
support protocol

T

Figure 4: Structure of a Da CaPo protocol

After the successful negotiation of a
configuration for the application protocol both CM
initiate their resource manager to establish the
selected protocol. In the combined configuration the

pre-determined application protocol will be
substituted by the result of the global configuration.
This corresponds to a reconfiguration. Reasons to
reconfigure an established connection are changes in
the properties of the system or the protocol
offending the application requirements. The
resource manager detects the changes and requests a
reconfiguration from the CM. Established
connections can be reconfigured either with loss of
data or without loss of data but with additional
delay. The application has the possibility to select
one of these possibilities by specifying it in the
application requirements.

II.D. The Modules

Protocol functions describe the different tasks
executed by protocols, e.g. error correction or flow
control. A protocol function may be implemented by
different protocol mechanisms. A protocol mecha-
nism consists of a part sending data and the
corresponding receiving part, e.g. the protocol
mechanism CRC will calculate the CRC value on
the sender and check it on the receiver. All protocol
mechanisms are realised by two modules in hard- or
software. As these modules are unidirectional, a
protocol configured by modules supports data flow
in one direction.

To fulfill their task, many modules have to
communicate with their peer entity on the other
system in the opposite direction to the data flow. We
call the direction defined by the flow of the
application data the main direction and the opposite
direction needed for control information back
direction . The 'Idle Repeat Request' module
receiving data has to confirm each data packet to his
peer module at the sender. On the other hand the
sending 'Idle Repeat Request' module may process
the next packet only after the reception of the
confirmation from the receiving module.

All modules are encapsulated to enable the
unconstrained configuration. They offer a unified
interface [11]. This procedural module interface is
used by the resource manager. It consists of the
following procedures:

• request and indication, to pass data to
the module and receive data packets from the
module after processing.

• request_back and indication_back
to pass and receive control packets, which
flow in the opposite direction to the data
flow.

• statistic, to get statistical data out of the
module, e.g. the number of recognised errors
or the number of retransmissions.

• init, to instantiate and initialise a module,
e.g. reserve buffer space, and to pass the
structure of packets.

• exit, to free all buffer space used by the
module and to remove the module.

A Run-time Environment for Da CaPo Proc. INET ’93 M. Vogt

BFC-5

Modules processing data only in main direction
offer only the request and indication

procedures, modules which are needed only in the
back d i rec t ion request_back a n d
indication_back . Fig. 5 shows a simple
module graph with main and back direction.

M 1

M 7 M 3

M 6 M 5

T-M

M 2

M 4

Main directionBack direction

Application

Figure 5: Main- and Back direction

T modules have a special significance. They
serve to abstract from the T services. They are
linked to the protocols by the same interface as all
the other modules. Their processing accesses the
T service by its generic interface. With a similar
abstraction applications are bound as A modules into
the protocol. A modules are part of the application,
but offer also the standard module interface and are
linked to the protocol.

II.E. The Database

All information necessary for the configuration
of protocols is collected in a database. This includes
the functional decomposition of the C services and
the protocol graphs, as well as dynamic and static
properties of modules and T services. The CP relies
on this database to configure a protocol which
corresponds to the application requirements. The
resource manager updates the database by collecting
the statistical data from the modules and changing
the description of their properties in the database.

III. Resource Management in Da CaPo

The resource manager (RM) [12] implements the
runtime environment for configurable protocols and
coordinates the work of the different Da CaPo
components. The tasks of the RM are to

• load, link and initialize modules according to
the module graph,

• release modules and resources after
connection termination,

• guide packets through the protocols,

• monitor the properties of system resources,
T services, modules and protocols, and to

• initiate a reconfiguration if necessary.

This chapter shows the concepts used by the RM
to solve these tasks. The implementation on a single
processor architecture is presented in chapter IV.

III.A. Protocol Instantiation and De-
instantiation

The CM asks the RM to build protocols and
passes the description of the module graph and the
structure of the packets to the RM. The RM fills a
data structure, the protocol context, which
comprises information for all modules of the
protocol. This includes the packet structure
determined by the CP and information to adapt the
module to a particular configuration, e.g. the
maximum transfer units of the T service etc. The
RM passes this data structure to all modules with the
init procedure. The protocol is constructed by
calling all the init procedures of all modules. The
calling sequence is determined by the module graph.
First, the T module is called, followed by its
successors in the module graph.

A module gathers information for the
initialisation from the protocol context. It keeps the
necessary instance information in newly allocated
buffer space, as several instances of the same
module might be needed in a single protocol graph.
As soon as all modules have been initialised, the
protocol is established.

Similarly the CM initiates the RM to de-
instantiate a protocol. The RM calls the exit
procedure of all modules according to the module
graph 'top-down' one after the other. This causes the
modules to free all their resources.

III.B. Packet Forwarding

We now describe the control of the packet
forwarding for unidirectional services. The protocol
moves data from a sending to a receiving
application. Bidirectional services are realised in
Da CaPo by two unidirectional protocols.

It is the task of the RM on the sending system to
pass the application data through the module graph
to the T module. The T service transmits submitted
packets to the receiving system. The RM of the
receiver now has to hand over the packet step by
step to the application. Packets to be processed are
passed to modules by calling the request
procedures. Through the procedure indication
the RM fetches the processed packet. The
application offers the same procedures to submit and

A Run-time Environment for Da CaPo Proc. INET ’93 M. Vogt

BFC-6

receive data, that means the packet forwarding does
not have to distinguish between protocol modules
and application. Fig. 6 shows how packets on the
sending side are passed from the application to
the T module.

M5
M4

resource manager

A M1 M2 M3 T

Request

Indication

Figure 6: Packet forwarding in a protocol

The example in Fig. 6 illustrates that Module 3,
4 and 5 can be executed in parallel (if the system has
several processors or specialised hardware). The
RM synchronises the transmission of the packet to
the T module.

The data flow for main and back direction
cannot be handled separately within a single
protocol. Therefore the packet forwarding has to
know about available data packets at modules, the
application and the T module. Every module returns
with the call of r e q u e s t , indication,
request_back or indication_back whether
it has a packet to forward in the main direction or
needs to send / receive control information. Control
packets have always priority and are passed
immediately through the whole graph to avoid
deadlocks. At the sending system the T module
consumes packets, at a receiving system packets are
consumed by the A module. New packets generated
by the application or the T service are reported to
the RM to be moved through the module graph.
Section IV.C shows the implementation of the lift
algorithm specific to a UNIX single processor
system.

III.C. Monitoring of System Behaviour

Da CaPo guarantees either to maintain the
application requirements or to abort the connection
if this is impossible. This may be achieved only by
the RM monitoring all relevant communication
parameters regularly. We distinguish four classes of
values:

• Values describing the state of the end system.
These are identical for all Da CaPo
applications.

• Values collected directly by the RM.

• Values delivered by modules.

• Derived values.

Some values are determined directly by the
monitor, e.g. throughput or total system load, but
most of them are collected via the statistic interface
of the modules. The fourth class comprises values
which may not be observed directly and have to be
derived from other values. For instance the residual
error rate may be estimated from the number of
errors found and the well known properties of the
error correction algorithm.

IV. Implementation of the Resource
Manager

We have developped the first prototype of
Da CaPo on a Sun 10/20 running UNIX (SunOS
4.1.3). We pay special attention to the integration
into the operating system. So we can avoid
influences with adverse effects on throughput which
show up on process switches, buffer management or
data copying [1]. Some simplification compared to
the previous chapter results from the
implementation on a single processor system, as
there is no need for synchronisation of the modules.

IV.A. Mapping of Da CaPo Processes to
UNIX Processes

Each Da CaPo application including all
configured protocols is mapped onto a single UNIX
process. This contrasts to other authors which
propose a process per packet [4]. Da CaPo itself
needs no process switches. This is achieved by
linking the whole code of Da CaPo including all
available modules to every application. Except for
information needed by different Da CaPo processes
on the same system (stored in the database) different
Da CaPo applications on the same end system are
independent.

Da CaPo itself distinguishes the three states
WORK, LIFT and MONITOR. It is the
responsibility of the resource manager to initiate the
transitions between these states. The state WORK
comprises all tasks which are not related to data
flow and monitoring. This means that application,
CM, CP and parts of the RM itself execute in this
state. It is the basic state of an application, from
which transitions to the other states may occur. The
RM changes the state to LIFT as soon as a packet is
available. This is the state with the highest priority.
The process executes the lift algorithm until no
module has a packet ready. Afterwards the state
machine switches back to the basic state. The state
MONITOR serves to monitor the properties of
protocols and to collect statistical data. This
transition is periodically triggered by a timer.

A Run-time Environment for Da CaPo Proc. INET ’93 M. Vogt

BFC-7

WORK

LIFT MONITOR

pa
ck
et
_

av
ai
la
bl
e

pr
ot
oc
ol
s_

id
le

monitor_

done

do_monitor

Figure 7: Da CaPo states

The transition to the state LIFT may be triggered
by a procedure call, a signal or a timer. It is always
handled by the procedure 'packet_-

available'. This procedure guarantees that no
additional transition takes place and all packets are
treated at return. If an application is ready to send a
packet, it directly calls this procedure. When a
packet arrives from the network, the T module sends
a signal. The signal handler then calls the procedure
'packet_available'. Modules, which require
data transmission at specific times, e.g. to sustain a
given throughput or to request a retransmission,
trigger the transition as soon as the corresponding
timer expires.

IV.B. Timer and Signal Management

The implementation of protocols in one UNIX
process requires a dedicated timer handling. UNIX
supports only one timer per process which is not
sufficient when working with a protocol. The
resource manager is responsible for the timer
management. He keeps an ordered list of installed
timers. Modules install and start timers with a
procedure call including the context information of
the module and its instance identification. The
resource manager uses internally the systemcall
ualarm. If the timer expires the resource manager
reads the first instance identification in the list and is
able to call the appropriate module. A similar
mechanism is necessary to propagate signals to the
modules. But as there is no possibility to
discriminate the receiving module of a signal, a
broadcast mechanism is used. If a module catches a
signal, it first checks whether it has to take any
action.

IV.C. Lift Algorithm

The module graph in the data direction has a
structure with arbitrary branches between the
endpoints A module and T module. As all the
modules have to be executed sequentially on a
single processor system, the RM first orders the
graph and thereby creates a sequential list of
modules. The first module in the list is the one
which puts new packets into the protocol. On the
sending system this is the A module. Only this
module delivers through its indication interface new
data packets. Via the request interface these packets
are passed on to the next module in the list. This
module executes the necessary work. Afterwards the
packet is again available at its indication interface.

At the other end of the list the packet is passed to a
T module. A packet reaching this module has been
completely processed and is handed over to the T
service. If another packet is available at the A
module, this packet is processed, otherwise the
algorithm terminates. As with a lift data packets are
fetched at one end, processed at a stop at each floor
and unloaded at the other end. The head module on
a receiving system is a T module, which receives the
packets from the network, as tail serves the A
module.

Some modules create several packets from a
single packet passed to them, e.g. the segmentation
module. A module implementing such a function
sets its status accordingly with the return of a partial
packet. As soon as such a partial packet reaches the
end point of the list, the RM fetches the next packet
from this module (which is not at the beginning of
the list) and guides it to the end. The counterparts
are modules, which combine several smaller packets
to a bigger one (reassembly). These modules set the
status of indication to indicate that they are not
yet ready to deliver a packet, but need more input to
do so. In this case, the algorithm restarts at the head
of the list and delivers as many packets as necessary
to build the bigger one. If both these kinds of
modules are included within the same graph, the
algorithm oscillates between them before it
eventually reaches one of the endpoints.

As modules may generate packets based on some
timer, the algorithm is even more complex. These
modules install a timer with the RM. Thus the RM is
able to detect a timer going off, which is a hint that a
packet might be available at this module. In this
case the lift algorithm starts once at this module and
not at one of the endpoints. If the procedure
indication delivers a packet, the lift algorithm will
move it on to its destination.

Each module may request (by its status value) a
single pass of the lift algorithm through the control
graph. As soon as this request is posted, no further
action takes place within the data graph, but a
complete pass through the control graph is executed.
The procedures request_back and
indication_back guarantee that this pass will
not block. If the module list starts with a T module,
data and control path are blocked until a packet
becomes available from the network.

IV.D. Buffer Management

Modules producing packets like sending A
modules and receiving T modules must allocate
buffer space for new packets if no preallocated and
unused buffer space is available. Succeeding
modules access the packet via a pointer to avoid
unnecessary copy operations. The packet is split into
the header part and the data part. The header part
has a fixed structure and size calculated by the
configuration manager. This allows a higher degree
of parallel modules. One module which modifies the
data part can run in parallel with multiple modules

A Run-time Environment for Da CaPo Proc. INET ’93 M. Vogt

BFC-8

which modify their header fields. Some modules
just insert a fixed value into their header field, such
as the address of the peer machine. Da CaPo takes
advantage of this property and uses a template. The
modules enter the constant value during
initialisation, afterwards they are safely removed
from the list of modules.

To optimize the allocation and deallocation of
buffer space for packets we implemented a
specialized buffer management. The allocation
operation of the buffer management initiates only an
UNIX m_alloc if there is no preallocated or
unused buffer available. The deallocate operation
decrements a reference counter for the buffer. The
value zero of this reference counter indicates an
unused buffer. As usual, modules which allocate
buffer space are responsible to deallocate it
afterwards. Modules which keep packets internally
like the sending Idle Repeat Request module have to
increment the reference counter and decrement the
counter if they do not need the packet any more (the
sending IRR module received an acknow-
ledgement).

This simple buffer management is not sufficient
in cases where a packet is segmented. A segmenting
module delivers pointers which reference parts of
the original buffer. The original buffer can only be
deallocated if all these segments are unused, while a
single segment never will be deallocated. The buffer
management takes these dependencies into account
with a reference from the segments to the original
packet. The creation of a segment causes an
increment of the reference counter of the original
buffer, while 'deallocation' of a segment decrements
it.

V. Conclusions

The architecture of Da CaPo aims at the dynamic
configuration and reconfiguration of protocols. The
preceding sections give an overview on the main
parts of Da CaPo and their interworking. We
introduced a unified module interface which allows
free combinations of modules to protocols. Even
standard protocols such as the ISO CLNP may be
configured [15]. The module design allows the
simple and fast integration into the runtime
environment, which minimizes performance
reducing operations.

All major parts of Da CaPo are specified and
implemented. The integration of all parts has been
finished by end of May. We intend to verify the
efficiency of the Da CaPo approach with this
prototype. The verification includes the examination
of the unified module interface and the overhead
introduced by the resource manager. Furthermore
we intend to study the mechanisms and the
performance of protocol reconfiguration. In this
context the problem of monitoring and guaranteeing
service quality which is up to now only
insufficiently solved [13] is of major interest. The

statistic interface of the modules allows a simple
integration of new solutions.

A major advantage of the free configuration of
modules is the possibility to compare the
performance of single protocol mechanisms in the
same environment. On the other hand we intend to
use this possibility for a teaching system. Students
should be provided with a graphical interface to
select modules and configure them in a module
graph [14].

VI. Acknowledgements

At this place it should be mentioned that a major
part of the work for designing and implementing
parts of Da CaPo was performed as student work
and diploma thesis. Particularly we thank
Chukuwma Ebo, Andreas Gotti and Marcel Dasen ,
Roman Graf Alireza Oloumi, Hasan, Peter Imhof
and Thomas Ward for their contributions.

VII. References

[1] Doeringer, W.A., Dykeman, D., Kaiserswerth,
M., Meister, B.W., Rudin, H., Williamson, R.:
"A Survey of Light-Weight Transport
Protocols for High-Speed Networks", in: IEEE
Transactions on Communications; Volume 38,
Number 11, Nov. 1990, pp. 2025-2039.

[2] Haas, Z.: "A Communication Architecture for
High-speed Networking", in: Proceedings of
IEEE INFOCOMM '90, Ninth Annual Joint
Conference of the IEEE Computer and
Communications Societies, IEEE Computer
Society Press, Los Almos, California; Volume
2, Jun. 1990, pp. 433-441.

[3] Clark, D.D., Tennenhouse, D.L.: "Architectural
Considerations for a New Generation of
Protocols", in: ACM SIGCOMM Computer
Communication Review; Volume 20, Number
4, Sep. 1990, pp. 200-208.

[4] O'Malley, S.W., Peterson, L.L.: "A Highly
Layered Architecture for High-Speed
Networks", in: Protocols for High-Speed
Networks, II, Majory J. Johnston (Editor),
Elsvier Science Publishers B.V. (North-
Holland), 1991, pp. 141-156.

[5] Box, D. F., Schmidt D. C., Suda, T.:
"ADAPTIVE An Object-Oriented Framework
for Flexible and Adaptive Communication
Protocols", Proceedings hpn92, 4th IFIP
conference on high performance networking,
Dezember 1992

[6] Zitterbart, M., Stiller, B., Tantawy, A. M.:
"Application-Driven Flexible Protocol
Configuration", Proceedings Communication
in Distributed Systems (in German), KIVS'93,
Springer Verlag, pp. 384-398

[7] ISO 8072, CCITT X.214 "Transport Service
Definition".

A Run-time Environment for Da CaPo Proc. INET ’93 M. Vogt

BFC-9

[8] Plagemann, T., Plattner, B., Vogt, M., Walter,
T., "A Model for Dynamic Configuration of
Light-Weight Protocols", IEEE Third
Workshop on Future Trends of Distributed
Computing Systems, 1992

[9] Tschudin, C.: "Flexible Protocol Stacks", in:
SIGCOMM '91 Conference, Communications
Architectures & Protocols, Zürich,
Switzerland, Computer Communications
Review; Volume 21, Number 4, Sep. 1991, pp.
197-204.

[10] Oloumi, A.: "Configuration of Light-
Weight Protocols Algorithm", Diploma Thesis
at Laboratory of Computer Engineering and
Networks, Swiss Federal Institute of
Technology Zurich, Sept. 1992.

[11] Ward, T.: "Modules for a File-Transfer-
Service in Da CaPo" (in German), Diploma
Thesis at Laboratory of Computer Engineering
and Networks, Swiss Federal Institute of
Technology Zürich, Feb., 1993

[12] Gotti, A., Dasen, M.: "Resource
Management in Da CaPo" (in German),
Students Work at Laboratory of Computer
Engineering and Networks, Swiss Federal
Institute of Technology Zürich, Feb., 1993

[13] Kurose, J. : "Open Issues and Challenges in
Providing Quality of Service Guarantees in
High-Speed Networks", in: Computer
Communication Review, Vol. 23, No. 1, Jan.
1993.

[14] Ebo, C. "An X Window based
Management Tool for Da CaPo" (in German),
Students Work at Laboratory of Computer
Engineering and Networks, Swiss Federal
Institute of Technology Zurich, Feb. 1993

[15] Hasan: "Implementation of ISO CLNP in
Da CaPo" (in German), Diploma Thesis at
Laboratory of Computer Engineering and
Networks, Swiss Federal Institute of
Technology Zürich, Feb., 1993

Author Information

Mr. Vogt joined the Computer Engineering and
Networks Laboratory in February 1990, where he
works towards his Ph. D. and is responsible for the
administration of the computer systems. He
received his Diploma Degree in computer sience
from the Swiss Federal Institute of Technology
Zurich in 1988. Thereafter he was employed for two
years with a counsulting company. He is mainly
interested in protocol architectures, multimedia
communication, high speed protocols and
embedding of protocols into the operating system.

Dr. Plattner, born 1950 in Bern, Switzerland, is a
Professor of Computer Engineering at ETH Zurich,
where he leads a communication systems research
group. He received a diploma in electrical

engineering from ETH in 1975 and a Ph.D. in
Computer Science in 1983. His research currently
focuses on applications of communication systems,
higher layer protocols and high-speed networking.
He is also interested in real-time computing, process
execution monitoring and debugging. He has been
active in the design and the implementation of the
Swiss National Network for Research and Education
(SWITCH).

Dr. Plattner is a co-author of a successful book
on message handling and X.400, of which the first
and second edition were published 1989 and 1990,
respectively. He has given numerous seminars on
data communications and computer networking.

Dr. Plattner is a member of the RARE Technical
Committee, which oversees the technical
development of academic networking in Europe.

Mr. Plagemann received his Diploma Degree in
computer science from the University of Erlangen-
Nürnberg, Germany in 1990. He joined the
Computer Engineering and Networks Laboratory,
Swiss Federal Institute of Technology Zurich, in
1990, where he is currently working towards his Ph.
D. His interests include user interfaces for
communica t ion se rv ices , mul t imed ia
communication, high-speed protocols, and protocol
architectures for high speed networks.

Mr. Walter joined the Computer Engineering and
Networks Laboratory, Swiss Federal Institute of
Technology, in 1986, where he is currently working
towards his Doctor degree. He received his Diploma
Degree in 1987 from the University of Hamburg,
Germany. His major interests are in distributed
systems, formal description techniques and
conformance testing, and protocol architectures for
high speed networks. Mr. Walter is member of
Gesellschaft fuer Informatik (FRG) and ACM.

